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Overview

I Motivation: Qualitative Spatial Representation

I What is QSR?

I Limitations of basic QSR
World has: movement, change, uncertainty,
discrete space, granularity

I How QSR has been extended

I Granularity (level of detail) remains a key
challenge

I Conclusions
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Motivation: Spatial Humanities

The digital humanities use computational
representations of data as a lens through which to
consider human experience.

The specifically spatial aspects of this process have
become known as the ‘spatial humanities’

(Bodenhamer, Corrigan, & Harris, 2010).
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Motivation: Spatial Humanities

The development of spatial humanities has been
driven partly by the availability of technology.

Spatial humanities makes extensive use of GIS.

for example . . .
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Motivation: Spatial Humanities – Example

‘Mapping the Lakes’ an interdisciplinary project by
Ian Gregory (Lancaster) and others, led to
examining:

“the ways in which GIS can be used to explore the
spatial relationships between two textual accounts
of tours of the English Lake District” Thomas Gray,
in 1769 and Samuel Taylor Coleridge in 1802.

Cooper and Gregory (2011)
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Motivation: Spatial Humanities – Coordinate Geometry
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Motivation: Spatial Humanities – problems

‘The use of GIS as a lens to understand the
geographical dimensions of the humanities raises
questions about the biases, assumptions, and the
silences in the technology that impinge upon the
exploration of the spatial turn’

Harris, Rouse, and Bergeron (2010)
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Motivation: Spatial Humanities – needs

The humanities need to expand the limited
quantitative digital representation of space to
encompass the intangible and socially constructed
world and not simply the world that can be
measured.

8 / 56



Motivation: Spatial Humanities – part of a solution?

Qualitative Spatial Representation (QSR) provides a
model in which qualitative spatial relationships such
as ‘inside’, ‘overlapping’, ‘separate from’, ‘left of’,
‘alongside’, and many others, find computational
representation as logical statements rather than as
numerical relationships.
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Coordinate geometry is not experienced space

“no one has ever perceived a point, . . . whereas
people have perceived individuals of finite extent.”

(Simons, 1987, p42)
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Discrete Space

“To understand what we mean when we say
that space is discrete, we must put our
minds completely into the relational way of
thinking, and really try to see the world
around us as nothing but a network of
evolving relationships. These relationships
are not among things situated in space –
they are among the events that make up the
history of the world. The relationships define
the space, not the other way round.”

(Smolin 2000)
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Origins of Mereotopology

Whitehead. Process and Reality (1929)
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Origins of Mereotopology

Whitehead. Process and Reality (1929)
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The idea of connection

Think: overlapping or touching at boundary

From Connection we can define Part, and other relations –
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Part defined from Connection
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The RCC-8 Relations

Yellow relates to Blue
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Properties of Connection

A Boolean Connection Algebra is a Boolean algebra A with
connection relation C, where A has more than two regions, and

Every region is connected to itself

Connection is symmetric

Every region is connected to its outside

A region is connected to a union of two others iff it’s connected to
at least one of them

For every (non-universe) region you can find an unconnected region
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Properties of Connection

A region is connected to its outside
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Properties of Connection

Only the universe is connected to everything equivalent to:

every (non-universal) region has a non-tangential proper part
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Limitations of Basic RCC

I Regions don’t move

I Regions don’t change topological properties

I Regions are crisp, not uncertain

I Regions are in a dense space (can always be sub-divided)

I Regions exist at a single level of detail
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Other qualitative description calculi

I Allen’s time intervals

I Qualitative directions (left, right, up, down, etc)

These intoduce some features which are not purely topological
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Moving Regions

PO(x,y) EQ(x,y)NTPP(x,y)DC(x,y) EC(x,y) TPP(x,y)

Some Possible RCC8 Transitions
(not the complete conceptual neighbourhood diagram)
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Moving Regions

564 13. Qualitative Spatial Representation and Reasoning

that some authors have found unpalatable: as Simons [189] put it, one can discrimi-
nate regions that differ by as little as a point, but one cannot discriminate the point.
There are also some topological peculiarities that follow from the choice of C1 as a
connection relation. For instance, it follows immediately that no region is connected
to its complement, hence that the universe is bound to be disconnected. This was noted
in [4, 34], where the suggestion is made that self-connectedness should be redefined
accordingly:

Cn′
τ (x) =df ∀y∀z(Eτ (x, y +τ z) → Cτ (cτ (y), cτ (z))).

This, however, is just a way of saying that self-connectedness must be defined with
reference to a different notion of connection (namely, the notion obtained by taking
i = 3).
(b) The case i = 2 also allows for the open/closed distinction, but yields theories

in which the relation of abutting may only hold between two regions one of which is
open and the other closed in the relevant contact area. This results in a rather standard
topological apparatus, modulo the absence of boundary elements. However, also in
this case the mereology is bound to violate (WSP). (Again, just take y open and x
equal to the closure of y.)
(c) The case i = 3 is the only one where the open/closed distinction dissolves: in

this case every region turns out to be τ -equal to its interior as well as to its closure. This
follows from (P3τ ), i.e., equivalently, from (C3τ ) or (P4τ ). This means that τ -theories
of this sort cannot be extensional—in fact, they yield highly non-standard mereologies.
However, this is coherent with the fundamental idea of a boundary-free approach. For
one of the main motivations for going boundary-free is precisely to avoid the many
conundrums that seem to arise from the distinction between open and closed regions
[100]. In addition, and for this very same reason, such theories can validate (SA3),
thereby eschewing the problem mentioned in (a) and (b) above.
The best known case of (c), i.e., a mereotopology with type ⟨3, 3, 3⟩ was first pre-

sented in [163], and elaborated subsequently in a series of papers including [43, 48,
100, 44], which has been called the Region Connection Calculus (RCC).9

Figure 13.3: 2D illustrations of the relations of RCC-8 calculus and their continuous transitions (concep-
tual neighbourhood).

9Galton [92] coined this name.

RCC8 conceptual neighbourhood diagram, Cohn and Renz (2008)
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Moving Regions

Event detection from video. Cohn, Hogg, et al.

Zoom out from numerical detail

24 / 56



Changing Regions

Splitting and Merging

In addition regions can appear / disappear
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Changing Regions

Part vanishes, PO to DR transition avoiding EC
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Changing Regions

RCC8 detects no change, but are these qualitatively different?
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Fuzzy Regions

Egg-Yolk Regions.
Yolk – definitely in region. White – possibly in region.
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Discrete Regions

Pixel as atomic region
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Discrete Regions
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Graph, edges represent adjacency. Galton (1999) and later
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Discrete Regions

Abstract Graph without structure of pixel grids
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Discrete Regions

Two regions (subgraphs) are connected if they are at most one
edge apart.
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Discrete Regions

Cannot define part from connection.

Everything connected to the black node is connected to the green
region.
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Discrete Regions

RCC8 still makes sense. Landini, Galton, Randell (2013)
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Moving Discrete Regions

External Connection to Equal transition without intermediate overlap
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Granular Regions

With granularity comes change
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Changing Granular Discrete Regions

Upper level (less detailed view)

Lower level (more detailed view)

Compare Qualitative Descriptions at the Two Levels
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Changing Granular Discrete Regions

Upper
Meet

Lower
Meet

Count components – not relations between regions
Stell, IJCAI (2013)
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Changing Granular Discrete Regions

Upper
Merge

Lower
Merge

In total there are 15 types of granular change
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Changing Granular Discrete Regions

Mathematical morphology provides formal granularity

Closing: fill in holes and gaps where probe won’t fit outside

Opening: remove small parts where probe won’t fit inside
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Changing Granular Discrete Regions

Change in Level of detail via closing then opening
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Spatial Relations at Two Levels of Detail

Closing / opening works for number of components of one region

But how about relationships between two regions?

Seems clear: EC to DR
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Spatial Relations at Two Levels of Detail

Seems clear: PO to NTPP
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Spatial Relations at Two Levels of Detail

Seems clear: PO to EQ
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Spatial Relations at Two Levels of Detail

Seems clear: PO to DR

45 / 56



Spatial Relations at Two Levels of Detail

Are the regions on the left connected at the coarse level?
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Spatial Relations at Two Levels of Detail

PO or EQ?

47 / 56



Spatial Relations at Two Levels of Detail

NTPP or EQ or TPP?
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Spatial Relations at Two Levels of Detail
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Spatial Relations at Two Levels of Detail
Try Dis-Connection instead of Connection?
Leonard and Goodman, Calculus of Individuals

“discreteness” (separation or apartness)

x eb y

part defined in terms of separation:

x is a part of y if everything that is separate from y is also
separate from x
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Spatial Relations at Two Levels of Detail

Cannot be separated vs Are connected
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Granularity for graphs

C1

C2C3

South

North

West
a
b

Mid

Centre

South

North

West
westline

circleline

p q
r

SouthEastSouthWest
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Spatial Relations for graphs

Boundary

NegationRegion

Supplement
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Spatial Relations for graphs
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Spatial Relations for graphs
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Conclusions

I Coordinate space of GIS does not fit human
experience

I One alternative is QSR

I Use of both points and QSR is needed

I Interdisciplinary collaboration needed to build
theories and systems that can more fully
represent the world
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