Geographic information, texts and social media

EXtraction de Connaissances à partir de donnéEs Spatialisées (EXCES) - SAGEO 2017 Rouen, 6/11/2017

<u>Davide Buscaldi</u> LIPN, Université Paris 13

U^SPC

Paris Cité

Université Sorbonne

Plan of the talk

- * Social Media and Geographic Information
- * Extracting Geographic Information from Tweets
- * An application in the Disaster Management domain

,	

Social Media

- * Key aspects:
 - * Wide coverage and continuously growing
 - * Temporally and **spatially** aware
 - * Allow for mining social behaviour, opinions, tendencies
- * Metaphor: <u>users as "active sensors" in an online environment</u>
 - 2013, Zhao et al., 2007)

Social Media as Sensor Networks

- Social Networks can therefore be viewed as sources of data about the around them
 - Something that is happening = event
- Main application: <u>event detection or discovery</u>
 - Planned events such as cultural or sport events;
 - accidents, natural disasters, etc.

physical world, with millions of users reporting about "what's happening"

But also and especially: unplanned events such as demonstrations, crimes,

Examples

- Tweet-SCAN (Capdevila et al., 2016) uses Twitter to discover
 events in the city of Barcelona
- (Oostdijk et al., 2016) used Twitter to detect traffic incidences in the Netherlands
- (Sakaki et al., 2010) used Twitter data to estimate earthquakes location
- (Santos et al., 2017) used Instagram data to detect events in Manhattan

(a) Tagged events over Barcelona

Event	Number of tweets	Most common hashtags
CaixaForum conference	21	#mlearningcat
ATypl2014 conference	99	#ATypl2014
Bogatell Beach concerts	61	#Merce2014 #Txarango #mediterràniament
Fàbrica Damm concerts	89	#AntigaFàbrica, #BAM14 #Merce2014
MACBA concerts	131	#macba, #BAM14 #Merce2014
Maria Cristina concerts	30	#40merce,#Merce2014
Referendum law	167	#lleiconsultes, #9N, #Parlament
Human towers	47	#castellers, #humantowers, #Merce2014
Fireworks	59	<pre>#piromusical, #tricentenari, #Merce2014</pre>
Mapping Barcekholm	80	#Barcekholm, #projecció, #Merce2014
Van market	281	#VanVanMarket, #ParcdelaCiutadella, #food
Wine Tasting	119	#vins, #mostracat, #Merce2014

(b) Events overview

Social Media and Geographic Information

- Localizing sensors (i.e. users) is critical
- How people tell their position?

 - Place mention (toponym) only if text is admitted as content
 - place mention

• Exact location (GPS coordinates) linked to the posted content (image, text)

• Origin of user (profile information) - can be both an exact location or a

Exact location

- Pro: best geolocalization
- Con:
 - Not all Social Media support it
 - At least Foursquare, Instagram and Twitter have support for geo-tagged content
 - GPS may be disabled on mobile devices for various reasons:
 - Privacy issues
 - Battery duration

 - Geo-tagged content is less than 1% (Gonzalez et al., 2012) of all the published content

Bad or no GPS signal; location not updated (resulting in an incorrect or imprecise geo-tag)

,	

Place mention

- Pro: widely used
 - (Hoang and Mothe, 2017): between 8.8% and 17.6% in various Twitter datasets
 - Microposts NEEL Challenge¹: 20.79% of tweets had a Location marker
- Con:
 - Potentially ambiguous

 - Strictly geographic ambiguity: ex. Cambridge, UK vs. Cambridge, USA
 - Street names
 - Imprecise
 - Non-standard formatting: abbreviations, hashtags, etc. (BCN, #paris, #nuitblancheparis)

• Toponym vs. non-toponym: ex. la Gave (de Pau) vs. gave (past form of the English verb to give)

¹ <u>http://microposts2016.seas.upenn.edu/challenge.html</u>

,	

User origin

- Pro: even more widely used
- Con:
 - Highly imprecise
 - Users are moving
 - If specified in a textual way, same problems with toponyms

@harmodio

@harmodio Vous suit

experverso exnarcisista conreca ídas

Expreso Coyoacán-Villetaneuse

S malversando.com

Inscrit en mars 2008

• Users may talk about an event that they're not involved in (but this may occur also with automated geo-tagging using GPS coordinates)

Extracting Geographic Information from Tweets

Geo-tagging Tweets

- Twitter is one of most popular social media, not only from the point of view of users but also from researchers
 - Rich context, relatively easy to analyze (text)
- But (as said before) geo-tagged content is extremely rare in Twitter
- In order to improve the effectiveness of any geographically-aware application based on Twitter, we need to geo-tag more data

,	
-	

Detecting placename mentions

- Sub-task of Named Entity Recognition task
- Wide-coverage NER tools: LingPipe, Stanford NER, GATE, etc. (Co-NLL accuracy ~90%)
 - GeoCLEF ~55%)
- Problem: Inter-class ambiguity
 - Washington, president or place? (PER vs. LOC)
- In Twitter: additional problem (hashtag, abbreviations, noisy text)

• However: not as accurate as on other categories of names (accuracy on

,	

Detecting placename mentions

- Standard NER tools fail on Tweets
 - (Gelernter, 2011) studied the performance of the Stanford NER on a set of tweets related to the Christchurch earthquake, finding an accuracy of 34.4%
- (Ritter et al., 2011) introduced a NER tool specifically designed for tweets
 - <u>https://github.com/aritter/twitter_nlp</u>
- Most solutions try to normalize hashtags and abbreviations, exploiting clues in the text or external knowledge
 - For instance: #ParisFashionWeek -> Paris fashion week
 - CDMX -> Ciudad de México

Resolving place names

- Being able to detect mentions of places is not enough
- The toponyms may be ambiguous
- a set of places with the same name
 - This allows to assign geographical coordinates
 - Key for the NLP GIS bridge
- has

• Resolving a toponym: to assign to a toponym the right referent, selected among

The ambiguity of a toponym depends from the world knowledge that a system

Dealing with ambiguity

- Factors that modify the risk of ambiguity:
 - small region, the less the risk of ambiguity
 - Detail of the resource used as inventory of placenames:
 - OpenStreetMap > GeoNames > (Wiki | DB)pedia

• Geographical scope of an application: if the application is monitoring a

,	

		Tour Eiffel	all coun
		search show on map	[advance
	Name	Country	
8	Eiffel Tower Ajfelova Kula,Ajfelova kula,Birca Eyfele,Bir boksta	ca Eyfelê,Ehjfeleva bashnja,Eifela tornis,Eifelio Paris > Paris > Paris	
8	Ares Tour Eiffel	France, Île-de-Fr Paris > Paris > Paris	
8	Hotel Classics Tour Eiffel	📡 Nominatim	
8	Saint Dominique Tour Eiffel	Tour Eiffel	
8	Hotel Splendid Tour Eiffel		
8	Novotel Tour Eiffel Superior	Tour Eiffel, 5, Avenue Anatole France, Quartier du Gros-Caillou, Paris 7e Arrondissement, Paris, Île-de-France, France métropolitaine,	
8	Adagio City Tour Eiffel	75007, France (Attraction)	
5	ARLEY TOUR EIFFEL	details	
9	adagio tour eiffel	Tour Eiffel, La Marsa, Cité Ettabek, La Marsa Hadayek, La Marsa, Tunis, 2070, Tunisie	Ja Muette
	mercure tour eiffel	(Residential)	CONTRACTOR DE LA
		Tour Eiffel, Avenue Gustave Eiffel, Quartier du Gros-Caillou, Paris 7e Arrondissement, Paris, Île- de-France, France métropolitaine, 75007, France (Drinking Water)	
		Tour Eiffel, 5, Quai Branly, Quartier du Gros- Caillou, Paris 7e Arrondissement, Paris, Île- de-France, France métropolitaine, 75007, France (Information)	Jasi
		Tour Eiffel, 5, Avenue Anatole France, Quartier du Gros-Caillou, Paris 7e Arrondissement, Paris, Île- de-France, France métropolitaine, 75007, France (House)	Auteu
		Gros-Caillou, Paris 7e Arrondissement, Paris, Ile- de-France, France métropolitaine, 75007, France (Ferry Terminal)	Église Molitor Molitor
		Tour Eiffel, Avenue de la Bourdonnais, Quartier du Gros-Caillou, Paris 7e Arrondissement, Paris, Île-de-France, France métropolitaine, 75007, France (Bus Stop)	

Talking resources...

- OpenStreetMap has also polygons
- GeoNames provides only the center coordinates
 - Quattroshapes has boundaries for various administrative regions, with GeoNames IDs

>> OpenStreetMap	Modifier *	Histor	ique Exporter	Traces GPS	Journaux des utilisateurs	Droits d'auteur Ai	de À propos
				gaùlos	11,1 / /0	\sim \sim	
Nœuds				Pontar		- \ [p+**	1
33388356 (partie du chemin	Piller Sud		Cavalier	a server /		. // 1	
(69034179))				$\lambda \mathcal{N} / \mathcal{D} $		0	
639613234 (partie des chemi	ns 🔲 69034130 (et	Carrouse	54177			
Pilier Sud (69034179))			de la Tour	S' N / //	\sim \sim		
639613207 (partie des chemi		. /	all a sumer	51//	And the second		
335260394, Pilier Sud (6	9034179) et P	ilier 💋	1 × 1 / / / ,	// //////			
Sud (69034179))		1	9 4 / / / */	17.00			
33388327 (partie des chemin	s 335100988 (ət 🔎	· // //	/ / 🛒 🔍 👘	Guist		
Pilier Sud (69034179))		1	·// ·// // ./				
639613243 (partie des chemi	ns 335100988	et			Sec. Sec.		
Pilier Sud (69034179))		1	1/20///////////////////////////////////			pavillon	and the second
828530561 (partie des chemi	ns 335100988	et	Cuil Screen and		TT	Edfel	\frown
Pilier Sud (69034179))		/	Class /	• •	• 🔨 🕛	1	
33388329 (partie des chemin	s 335100988 (st 🎽	Cuin Bienny	× 1	- i 💦 🤘 🖌 🖌 🖌		
Pilier Sud (69034179))			23 11 0		2 / 1 / 1		
3139588816 (partie des chem	nins 33510098	8 et 🍃	//	· · · · · · · · · · · · · · · · · · ·			
Pilier Sud (69034179))		/			Le ju	iles 📻	
3422228276 (partie des chem	ins 30868916	5,				Burrets	
335100988 et Pilier Sud	(69034179))			Small Tower	🔪 🔍 🦉 🔰 Pariš	Tour	- Entre
3139781236 (partie des chem 335100988)	nins 30868916	5 et 🤌		• • •			same the
3422228277 (partie des chem	nins 30868916	5			=	Ti due	1/
	(69034179))	°, ?		0 0	0 9 ⁴	A part of	/
828533301 (partie des chemi					Commence of Same	1	Ð
335100988, 50473353 et						C I I a	
000100000, 00410000 0	T INGE OUG	F		Cr a	H		

http://quattroshapes.com/#preview

Ambiguity and Frequency

- Most frequent toponyms tend to be less ambiguous than those rarely used
- Street names are particularly ambiguous

Probability of finding an ambiguous toponym at Frequency F (Buscaldi and Magnini, 2010)

P(F)

 $|T_{amb_F}|$

,	

Resolving toponym ambiguity (from GIR)

- Existing methods can be subdivided into three broad categories:
 - Map-based
 - They need geographical coordinates
 - Knowledge-based
 - They need resources providing clues for the disambiguation
 - Data-driven or supervised
 - They need a large enough set of labelled data

Many names occurring only once (impossible to estimate their probabilities)

,	

Exploiting geographical context

 The right referent is the one with minimum average distance (geographical or conceptual) from the context locations

"One hundred years ago there existed in **England** the Association for the Promotion of the Unity of Christendom. ... A <u>Birmingham</u> newspaper printed in a column for children an article entitled "The True Story of Guy Fawkes," ... An Anglican clergyman in **Oxford** sadly but frankly acknowledged to me that this is true. ... A notable example of this was the discussion of Christian unity by the Catholic Archbishop of **Liverpool**, ..."

_		
<u></u>	7	
	-	

The "Steinberg hypothesis"

- These methods cannot be applied in Twitter because of the lack of context toponyms
 - Among all the tweets containing a toponym in Microposts 2016 collection, 68.8% contained just only one toponym
- (Overell, 2009) formulated the Steinberg hypothesis (based on the famous New Yorker drawing by Steinberg):

Resolving toponym ambiguity in Tweets

- The "Steinberg hypothesis" may help in disambiguating toponyms in Tweets
- Need to take into account additional context:
 - Mention of places in the history of the user
 - User origin
 - Size of places
- (Zhang and Gelernter, 2014) found the following best features:
 - opulation of place in gazetteer entry.
 - number of alternative names within an entry, and among matching entries.
 - other location expressions mentioned in the tweet

,	

Geo-tagging without place names

- Technique introduced by (Paraskevopoulos and Palpanas, 2015)
- an event taking place at the same coordinates
- data are tagged with the same location
- Ideal for narrow, focused scope

INPUT: A training set of timestamped and geotagged tweets, a timestamped query-tweet (Q_t) that is not geotagged. **OUTPUT:** The most eligible candidate location.

- 1: for all $i \in \{\text{candidate geolocations: Geolocs}\}$ do
- for all $t \in \{\text{time intervals}\}$ do 2:
- $Doc_{i_t} \leftarrow$ all tweets in location *i* at time interval *t* 3:
- $kwVector_{i_t} \leftarrow$ create vector of Doc_{i_t} keywords and their weights 4:
- 5: $kwVector_{Q_t} \leftarrow$ create vector of Q_t keywords and their weights
- 6: $location \leftarrow argmax_{i \in Geolocs} \{ similarity between kwVector_{i_t} \text{ and } kwVector_{Q_t} \} \}$
- 7: return location

Idea: use tweets that are geo-tagged with precise coordinates to build a signature corresponding to

• Tweets that are not geo-tagged but have words contained in a signature derived from geo-tagged

▷ process training dataset, for all locations \triangleright and for all time intervals

 \triangleright process non-geotagged tweet Q_t \triangleright identify location of tweet Q_t

,	

An application in the disaster management domain

Not only event detection

- Many applications that exploit the spatial data are focused exclusively on the detection of ongoing events
- Tweets provide more context that is worth to be analyzed
 - Going beyond counting the number of tweets in a certain place
- Applying NLP techniques such as sentiment analysis to geo-tagged data has many potential interesting applications

Social Media and Disaster Management

HURRICANE SANDY Facebook mentions of "Hurricane Sandy" and "Frankenstorm" increased by 👄 1,000,000%

FEMA tweeted to its Twitter followers:

Phone lines may be congested during/ after #Sandy. Let loved ones know you're OK by sending a text or updating your social networks."

http://mashable.com/2013/05/21/social-media-disaster-response/#IKxYUNzazgq0

,	

Social Media and Disaster Management

Question: are we able to select tweets that are related to "interesting" categories (such as help requests) and filter out the "noisy" categories (sarcasm, etc.)?

> From: Parsons et al., Thematically Analysing Social Network Content During Disasters Through the Lens of the Disaster Management Lifecycle

Case Study: the 2014 Genoa flood

8922 subj 499 pos 3519 neg 1019 iro

6033 users

Problem: evaluation

,	

Evaluating subjectivity accuracy

- Manual annotation of 75 sources
- News (59.2%)
 - @ScoopSquareGE,
 @MeteoWeb eu, @infoitinterno, @ITnewsGE, @TopTrendIT...
- Personal accounts (40.8%)
 - @Miti_Vigliero, @mauneobux, 0 @LaRouge_DOC, ...

Indirect evaluation - relevant items

- Subset of relevant hashtags, toponyms and topics :
 - #allertameteo, #protezionecivile, #alluvionege, ...
 - Montoggio, Sturla, Fereggiano, ...
 - "Ondata di piena", "Invaso dal fango", "esonda ..."...

,	

Indirect evaluation - relevant items

*acqua , deraglia un freccia *allagamenti e paura *allerta massima *allerta meteo *alluvione in corso *croce rossa *crolla muraglione *danni enormi *danni ingenti *deraglia un treno *emanata allerta *esce dai binari *esonda il bisagno *esonda lo scrivia *esonda lo scrivia *esondano i fiumi *esondano i l bisagno *esondano i torrenti *esonda un torrente *evacuate 16 famiglie *fa paura *frana improvvisa *ho paura	 livello di allerta mancato allarme meteo da allerta momenti di ansia morto e dispersi morto e gravi morto foto nuova alluvione nuovo alluvione ondata di piena piani alti prestare massima attenzione protezione civile rubano nei negozi sciacalli in azione situazione critica situazione critica trascinate da acqua trascinate dall' acqua trascinate dall' acqua travolge auto trovato il corpo usate l' auto uscire di casa uscire di casa 	* #al * #al

llerta2 llertameteo llertameteoge llertameteogenova llertameteolg llertameteolig lluvione lluvionege ngelidelfango rpal isagno usalla ampoligure hiaravagna rocerossa mergenza24 mergenze

#entella
#fereggiano
#forzagenovarisorgidalfango
#genovaalluvione
#iononrischio
#maltempo
#molassana
#montoggio
#noncefangochetenga
#ovada
#polcevera
#protezionecivile
#stura
#voltri

,	

Detecting trending items

- Extraction of trending* (hashtags | toponyms | topics) for each hour $Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} > \epsilon$
- The key is to model λ to capture the expected frequency of an item
- (week, hour, etc.) of the year
- In our test, the threshold ε was set to 0
- λ was set to the estimated frequency during the previous hour

• With enough data, it is possible to model the frequency over the same period

	Hash	ntags	Торо	nyms	Top	pics
	Acc.	Cov.	Acc.	Cov.	Acc.	C
All	0.160	1.000	0.660	0.875	0.104	0.
Subj	0.197	0.875	0.661	0.844	0.156	0.
Neg	0.254	0.625	0.482	0.594	0.137	0.
Pos	0.208	0.188	0.155	0.156	0.164	0.
Iro	0.322	0.313	0.362	0.344	0.118	0.

Mean Average Precision

Qualitative analysis

- Most of the positive tweets (82 out of 493 ~16%) came from the same account (spam?):
 - "#News e #Astronomia Genova alluvionata, esondano i fiumi: un morto... -... http://bit.ly/110yfvW Buona visione !:))"
- Many false positives for irony but also some good answers: "Ragazzi tranquilli #Renzi ha detto che non ci lascerà soli"
- Negative tweets may convey different emotions:
 - Fear: "Basta guardare fuori per avere paura"
 - Rage: "In tre anni non è stato fatto nulla, amministrazioni delinquenti"
 - Sadness: "Mi viene da piangere"
- Some features may **change polarity** (meaning) depending on the context:
 - "Coraggio Genova!!!" vs. "Salite ai piani alti!!!"
 - "Speriamo bene" vs. "Stiamo bene"

,	

Geographical aspects

- toponyms
- the use of hashtags and incorrect capitalization
- Only 13 toponyms in the collection, all with only one possible referent • In most cases they were written correctly, with the only problems related to
- Less than 190 tweets were geo-tagged (GPS coordinates)

• The narrow scope of the study limited also the ambiguity of the involved

,	

Future plans: project NaDiA

Extracting related flux

,	

Seine dataset

• We collected 45,831 tweets related to the spring 2016 flood in France (annotating...)

- <tweet id="736542320611446784" authorid="@rdvavecdamenat" time="2016-May-28 14:59" loc="Mirebeau, France">ça va être costaud les orages cette après-midi sur le Poitou fort risque d'inondations locales à prévoir # Vienne86</tweet>
- <tweet id="735868225506947072" authorid="@AuCoeurMeteo" time="2016-May-26 18:20">#Inondations locales à # StMalo sous un orage diluvien...https://twitter.com/Meteovilles/status/ 735867818781069312 ...</tweet>
- <tweet id="735850798316441600" authorid="@KeraunosObs" time="2016-May-26 17:11">Inondations locales en # Bretagne à Plougasnou dans le # Finistère lors des # orages de l'après-midi via @LeTelegrammepic.twitter.com/HZtrRK5sQg</tweet>

Conclusions

- Social Media are a rich source of information with spatial and temporal markers Most of the geographic information is coded using text (toponyms)
- Resolving toponyms may be a major problem or not, depending on the scale of the application
 - GIR-derived Algorithms and techniques often lack context to be effective at the same level
 - Need to exploit the network to enrich context (where possible)
- NER algorithms need to adapt to the writing style of social media

Selected Bibliography

- Thi Bich Ngoc Hoang, Josiane Mothe: Location Extraction from Tweets, Information Processing and Management, in Press (2017)
 Pavlos Paraskevopoulos, Themis Palpanas: Fine-Grained Geolocalisation of Non-Geotagged Tweets, Advances in Social Networks
- Pavlos Paraskevopoulos, Themis Palpanas: Fine-Grained Geo Analysis and Mining (ASONAM), 2015
- Judith Gelertner, Nikolai Mushegian: Geo-parsing Messages from Microtext, ransactions in GIS, 2011, 15(6): 753–773
- Zhang, Wei, and Judith Gelernter. "Geocoding location expressions in Twitter messages: A preference learning method." Journal of Spatial Information Science 2014.9 (2014): 37-70.
- Capdevila, Joan, et al. "Tweet-scan: An event discovery technique for geo-located tweets." Pattern Recognition Letters 93 (2017): 58-68.
- Sakaki, Takeshi, Makoto Okazaki, and Yutaka Matsuo. "Earthquake shakes Twitter users: real-time event detection by social sensors."
 Proceedings of the 19th international conference on World wide web. ACM, 2010.
- Buscaldi, Davide, and Bernardo Magnini. "Grounding toponyms in an Italian local news corpus." Proceedings of the 6th Workshop on Geographic Information Retrieval. ACM, 2010.
- Nelleke Oostdijk, Ali Hürriyetoglu, Marco Puts, Piet Daas, Antal van den Bosch: Information extraction from social media: A linguistically motivated approach. TALN 2016, Paris

